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ON SEASONAL VARIATIONS OF MARS' GRAVITATIONAL FIELD 

INTRODUCTION 

I t  i s  well-known t h a t  Mars has seasons l i k e  the Earth. However, the 
Mars' colder atmospheric temperature (in average some 70°K lower than the 
Earth I s )  and i t s  predominantly carbon dioxide (COP) atmosphere (more than 
95%) conspire t o  c rea te  a la rge  exchange of C02 mass between the  Martian 
atmosphere and polar  caps. The mass exchange occurs i n  seasonal cycles: a 
g r e a t  quant i ty  of C02 condenses t o  form (or  add to)  the  polar  caps i n  winter 
and sublimes i n t o  the atmosphere i n  summer. The mass involved i s  a t  l e a s t  
8x1Ol5 kg, which i s  about 25% of the t o t a l  mass of the  Martian atmosphere, 
o r  equivalent t o  a cap of s o l i d  CO extending t o  45" l a t i t u d e  changing i t s  
thickness by some 20 cm (Hess e t  a?., 1979). In cont ras t ,  the  Ear th ' s  atmo- 
sphere only var ies  seasonally by about lX1015 kg (or  about 0.02% of the 
t o t a l )  , primarily due t o  var ia t ion of water vapor content (Trenberth, 1981). 

The e f f e c t  of this C02 mass red is t r ibu t ion  on Mars' rotat ion has been 
discussed by Reasenberg and King (1979) and Cazenave and Balmino (1981). The 
present paper i s  an attempt t o  address quant i ta t ive ly  this  C02-exchange 
e f f e c t  on the Martian gravi ta t ional  f i e l d .  Qual i ta t ively,  the gravi ta t ional  
e f f e c t  of any global-scale mass red is t r ibu t ion  is  la rge ly  decided by the  
r a t i o  of the net  redis t r ibuted mass t o  the t o t a l  mass of the planet.  For the 
Mar t i an  C02-exehange e f f e c t ,  t h e  raticj i s  8Xi015/6,4XiO23, o r  about io-8. No 
geological o r  geophysical phenomenon on Earth i s  known t o  produce a r e l a t i v e  
mass r e d i s t r i b u t i o n  of nearly t h a t  s ize  i n  a year. The post-glacial  rebound 
of the mantle, the s t rongest  southern o s c i l l a t i o n  / El NiPlo events i n  the  
atmosphere and t h e  ocean, and the grea tes t  earthquakes a r e  a l l  a t  l e a s t  one 
t o  two orders  of magnitudes smaller. Since even these geophysical phenomena 
a r e  a1 ready being observed gravi ta t ional  l y  by Earth-orbi t i n g  sate1 1 i t e s  
(e.g., Rubincam, 1984; Gross and Chao, 1985), we can expect the C02-exchange 
e f f e c t  on Mars t o  be detectable  from fu ture  Mars o r b i t e r  missions. I f  so, 
the  observed gravi ta t ional  f i e l d  changes can provide gross cons t ra in ts  on 
the  meteorological models f o r  Mars. 



GENERAL FORMULATION 

Let the  coordinate system be such t h a t  the  o r ig in  i s  a t  Mars' cen ter  of 
mass, and the  x,  y ,  and z axes def ine the  O'E Meridian, t he  90"E Meridian, 
and the  North Pole, respect ively.  We express the  grav i ta t iona l  po ten t ia l  U 
of a planet  a t  an external f i e l d  point ro through spherical  harmonic expan- 
sion (e.g. , Balmino, 1981) : 

where n i s  an abbreviation f o r  the  co- la t i tude  9 and e a s t  longitude X ,  
( r o l e  ,io) = (ro,no) i s  the  spherical  coordinate of rO, G i s  t he  grav i ta -  
t iona? constant,  M the t o t a l  mass, and R t he  mean radius  of t he  planet .  The 
spherical  harmonics in  t h i s  paper a r e  defined a s  

Ylm(n) = [(~-6,~) (21+1) (1-m) !/(l+m> !]1/2 Plm(cOSe) eimX (2) 

where 1 and m a r e  respect ively the degree and order ,  6 i s  the Kronecker 
d e l t a  function, Plm i s  the  associated Legendre function. We sha l l  l a t e r  use 
the  index (1 ,m) t o  specify a p a r t i c u l a r  harmonic component. The normal iza-  
t i on  in (2) i s  such t h a t  

I y1 (n) Yim(n) dn = 4r (~-6,~) b1 I tjmm, (3)  

where the  a s t e r i sk  denotes complex conjugation, dn i s  an element of so l id  
angle,  and the in tegra t ion  i s  over the  uni t  sphere. 

Neglecting higher order terms, the  f i r s t  two terms in  equation (1) rep- 
resent  the  potent ia l  the planet would have assumed in  hydrostat ic  e q u i l i -  
brium (indicated by the  superscr ipt  H) under ro ta t ion .  That cons t i t u t e s  the  
reference spheroid. Thus  the  remaining term T(ro) i s  the  anomalous poten t ia l  
r e l a t i v e  t o  the reference spheroid. I t  can be expressed as  

where Re denotes the  real  value. The normalization in  (3) i s  chosen such 
t h a t  t he  harmonic coe f f i c i en t  Alm in  (4) ,  here re fer red  t o  a s  t he  complex 
Stokes coe f f i c i en t  , i s  d i r e c t l y  re1 ated t o  the ordinary (normal i zed) Stokes 
coe f f i c i en t s  Clm and Slm (c.f .  Kaula, 1966) simply through 

Alm = Clm + islm. (5) 

The geoid of a planet i s  t he  equipotent ia l  surface on which T(ro)=O. I ts  
departure from the reference spheroid i s  the geoid height (c.f. Figure 3 ) .  
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By comparing equations (1) and (4) w i t h  the  multipole expansion of U, 
one can r e l a t e  the complex Stokes coef f ic ien ts  t o  the  densi ty  d i s t r ibu t ion  
p ( r )  o f  the planet  (e.g., Chao & Gross, 1986): 

1 

where dV i s  the  volume element, and the in t eg ra t  
volume V o f  t he  planet.  

on i s  over the  e n t i r e  

Now suppose a time-varying change Ap(r , t )  i s  imposed upon p ( r ) .  In an 
Eulerian descr ip t ion ,  the  r e su l t an t  change i n  the  complex Stokes coe f f i c i en t  
follows immediately from equation (6) : 

1 

where the  in tegra t ion  i s  now over the changing volume o f  the planet .  In the  
following we sha l l  t r a n s l a t e  these changes i n t o  equivalent changes i n  the  
geoid height N using Bruns formula N=T/g, where g = GM/R* i s  the surface 
grav i ta t iona l  accelerat ion (e.g., Rapp, 1975). T h i s ,  i n  the present case,  
gives the  root-mean-square (rms) amplitude o f  the  (1,m) component of the  
geoid height change: 

A N  .(t) ( in  mill imeters) provides a comfortable measure of the e f f e c t  of 
Ap[r,t) on the  geoid. 
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COZ MASS EXCHANGE ON MARS 

Equation (7) will  now be applied t o  t h e  C02 mass exchange between the 
atmosphere and polar caps on Mars. First, we not ice  t h a t  this mass exchange 
occurs i n  a t h i n  veneer on the  Martian surface (only a few tens  of kilo- 
meters th ick) ,  and any radial  movement i s  negl igible  i n  the  presence of the  
global-scale l a t e r a l  movement. Therefore, t o  a good approximation we can 
take r=R and use surface densi ty  Aa(n,t) i n  place of the  volume densi ty  
Ap(r , t ) .  Equation (7) then reduces t o  

where the  integrat ion i s  over the e n t i r e  surface of the planet.  

The s implici ty  of equation (9) i s  deceiving because t o  obtain the t r u e  
Aa(0,t) one should i n  general take i n t o  consideration the  grav i ta t iona l  
in te rac t ion  between the s h i f t i n g  mass and the r e s t  of the planet ,  o r ,  i n  the  
present case, the e f f e c t  of the e l a s t i c  yielding of the s o l i d  Mars due t o  
the loading and unloading of the CO mass. However, as  shown below, this 

r i g i d  body. 

compares t o  unity. Assuming a homogeneous planet ,  

in te rac t ion  i s  small on Mars so tha P the  s o l i d  Mars can be t rea ted  as  a 

The relevant parameter i s  the load Love number k i  of degree 1 and how i t  

(Munk & MacDonald, 1960). Here p and a r e  the average densi ty  and r i g i d i t y ,  
respectively,  and p = 3.9 x l o3  kg m-$. I f  we assume t h a t  Mars has ' the  same 
average r i g i d i t y  a s  the  Earth, p N 1.45 X 10l1 kg m - l  s- l ,  then l k 2 1  = 
0.037, o r  about one eighth ?f the Ear th ' s  (Lambeck, 1980). T h i s ,  i n  f a c t ,  
may be an upper l i m i t  on I k 2 (  s ince Mars, being a colder  planet  i n t e r n a l l y ,  
might have a higher r i g i d i t y  than the Earth 's .  Likewise the o ther  Ikll<<l.  
We thus conclude t h a t  the e l a s t i c  yielding of the s o l i d  Mars can be safe ly  
neglected. We sha l l  a l s o  neglect the se l f -grav i ta t ion  w i t h i n  the  C02 mass 
i t s e l f .  The resu l tan t  e r r o r s  a r e  re1 a t i v e l y  smal 1 compared w i t h  those 
introduced by the  s implif icat ions we shal l  make i n  our model below. In the 
r i g i d  s o l i d  Mars approximation, we can extend equation (9) t o  encompass 1 = 1  
(m=O,+l) terms. These terms simply give the r e l a t i v e  shift  i n  the center  of 
mass of the  so l id  par t  of Mars due t o  the C02 variat ions.  

Now l e t  us follow the seasonal journey of the C02 mass and examine 
separately the contributions t o  (9) of two phases: ( I )  the  waxing and waning 
of the so l id  C02 i n  polar caps, and ( i i )  t h e  geographical d i s t r i b u t i o n  of 
the gaseous C02 in the atmosphere. The two phenomena, of course, accompany 
each o ther  inasmuch as  the t o t a l  CO mass i s  constant.  The t o t a l  C02- 
exchange ef fec t  i s  simply the sum oe the two contributions.  
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Fig.  1. A 
caps. 

cross section o f  Mars showing schematically two solid C02 polar 
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Waxing and Waning of Polar Caps 

and sublimation occur uniformly over the  polar  caps, and the caps a re  
c i r c u l a r  and symmetrical with respect  t o  the  poles (Figure 1 ) .  The surface 
densi ty  Aa(n,t) = Ao(t) i s  thus a constant of posi t ion on the caps which 
extend t o  a constant angle IC from the poles.  

First l e t  us examine the  simple geometry where the seasonal condensation 

For m f O ,  equation (9) gives AAlm = 0,  an expected r e s u l t  in l i g h t  of the  
axial  symmetry under the  present assumptions. For m = O ,  a f t e r  some simple 
algebra,  equation (9) leads t o  

AAlO(t) = AC&) 

1 
- = I  dZ1+1 (1-cosn) 

where PI i s  the Leaendre function of degree 1 ,  AM(t) = 2rR2(1-cosn)Aa(t) i s  
the  tot41 COP mass-accumulated on the  cap a t  any given moment, and the  
subscr ip ts  n and s ind ica te  the  northern and southern hemispheres, respec- 
t i ve ly .  Due t o  the eccen t r i c i ty  of t he  Mars' o r b i t  t he  southern COP polar  
cap i s  considerably more massive and extensive than i t s  northern counterpart  
(Hess e t  a l . ,  1979). A t  t he  peak of i t s  formation, t he  angular ex ten t  ns 
ac tua l ly  var ies  with longitude between 40' and 50', according t o  Viking 
o r b i t e r  observations (Briggs e t  a1 . , 1977). For s impl ic i ty  we sha l l  t ake  as  
an average ns=45'. The value of rcn i s  l e s s  ce r t a in .  The var ia t ion  of t he  COP 
mass in  the polar  caps, AM(t), can be estimated from the  atmospheric pres- 
sure  recordings of the two Viking landers (Hess e t  a l . ,  1979, 1980). I t  i s  
shown schematically i n  Figure 2, where the zero level corresponds t o  the 
minimum polar cap COP (or ,  equivalent ly ,  maximum atmospheric COP). Here an 
annual period (669 so l s ,  o r  687 Earth days) and a semi-annual period 
dominate. Although i t  i s  not possible  from these records t o  separate  the  
contr ibut ions from the northern and southern caps,  each cap i s  responsible 
f o r  e s s e n t i a l l y  half  a (Martian) year.  I t  i s  i n t e re s t ing  t o  note from 
equation (11) t h a t  the var ia t ion  i n  t he  Stokes coe f f i c i en t ,  A C l 0 ,  wi l l  
follow the sum o f  the  contr ibut ions from both caps i f  1 i s  even, and the  
d i f fe rence  i f  1 i s  odd. T h u s ,  under the  present s impl i f ica t ion ,  i f  we can 
observe two varying Clo( t )  , one f o r  an even 1 and one f o r  an odd 1 , i t  i s  in 
p r inc ip l e  possible t o  solve f o r  AMn(t) and AMs(t) using equation ( l l ) ,  thus 
providing two important cons t r a in t s  on meteorological models f o r  Mars. 

I t  is  a l so  evident from equation (11) t h a t  the  amplitude becomes 
progressively smaller as  1 increases.  Here we sha l l  only consider a few 
lowest degree terms by evaluating t h e i r  maximum amplitudes which occur a t  
the  peak of formation of t he  southern cap ( t = t  , see Figure 2). T h u s ,  
subs t i t u t ing  i n t o  equation (11) the  value f o r  !MI AMs(tO) = 8 X 1015 kg, and 

) f o r  1=1-5, l i s t e d  in Table 1. Table 1 a l so  shows the  
e of change in the  more f ami l i a r  zonal J1 coe f f i c i en t s  

which a r e  re la ted t o  C l 0  by J1 = -d(21t1)C10, as  well a s  t he  rms amplitude 

6 
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- 8 x  1015 

Polar caps 

\ 

\ 
\ 
\ 

0 t o  669 
Time (sol) 

Fig. 2. C02 mass change i n  the course of one Martian year  where the  zero 
time (t=O) corresponds t o  the winter s o l s t i c e  (adopted from Hess e t  a l . ,  
1980). The upper curve represents  the formation o f  the  so l id  CO polar  caps, 
and the  lower curve represents  the  corresponding lo s s  o f  atmosp 6 e r i c  C02. 
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I 
i n  the  corresponding geoid height change as  given by equation (5) us ing  
R=3390 km. The l a r g e s t  change i s  i n  the  1=1 term, which corresponds t o  a 
maximum s h i f t  of d(21+1)AN10 = 36 mm by the  s o l i d  planet  w i t h  respect t o  the 
center  of mass a t  t=tO. The year ly  peak-to-peak var ia t ion  taking i n t o  
account both northern and southern caps i s  about 52 mm. The most geodeti- 
c a l l y  in te res t ing  chan e ,  however, i s  i n  J2  which i s  the second l a r g e s t  

(e.g., Reasenberg e t  a l . ,  1975) t o  be J 2  = 1.95g x 
amplitude of the r e l a t i v e  seasonal change i s  therefore  AJ2/J2 9 3.8 ppm 
(par t s  per mill ion).  In comparison, this i s  two orders  of magnitude la rger  
than the observed secular  change i n  the  Ear th ' s  J 
post-glacial  rebound of the  mantle) which i s  foun8 t o  be only 0.024 ppm per 
year (Rubi ncam, 1984). 

term: AJ2 = -7.5 X 10- B . The nominal value of J has been well determined 
The maximum 

(presumably due t o  the 

The values i n  Table 1 a r e  obtained under the  s implif icat ion of a uniform 
condensation/subl imation of sol i d  C02 over the e n t i r e  polar  caps (Figure 2 ) .  
The real  d i s t r i b u t i o n ,  however, i s  probably more concentrated toward the  
pole. The l a t t e r  will  y i e l d  somewhat l a r g e r  changes i n  C l o ( t ) .  Hence Table 1 
i s  only a lower bound on ACio(to). For example, the  extreme case where a l l  
the condensed C02 i s  concen rated a t  the  pole (6.0) gives,  according t o  
equation ( l l ) ,  a AJ2(t0) of -12.5 X which i s  some 60% l a r g e r  than the 
uniform case. A more r e a l i s t i c ,  "layered cake" model where the  C02 layer  
between R=O" and 22.5* is  twice as  thick as  t h a t  between n=22.5' and 45" 
y ie lds  a AJ2(t0) of -8.7 x 

Table 1. Maximum gravi ta t ional  e f f e c t  of the changing polar  cap C02 
(equation 11). 

1 AC10 (X109) AJ1 (X109) AN10 (mm) 

-6.1 10.6 21 

3.4 -7.5 11 

-1.5 4.0 5.0 

0.31 -0.94 1.1 

0.30 -1.0 1.0 
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Geographical Dis t r ibu t ion  o f  the Atmosphere 

The Martian surface topography will influence the  way the  changing 
atmospheric C02 mass d i s t r i b u t e s  i t s e l f  geographically; t h a t ,  in  turn, will 
produce changes in  the  gravi ta t ional  f i e l d .  For s impl ic i ty ,  we here assume 
t h a t  t he  atmosphere i s  always i n  hydrostatic equilibrium. Physically,  this 
requi res  an instantaneous red is t r ibu t ion  of C02 mass over the  globe. This i s  
permissible since we a re  only concerned w i t h  seasonal periods which a re  much 
longer than the  time sca le  f o r  Martian atmospheric c i r cu la t ion .  

In equi 1 i br i  urn, any isopycnic (constant densi ty)  surface of t he  atmo- 
sphere wil l  follow an equipotential  surface of the  grav i ta t iona l  f i e l d .  In a 
hypothetical case where the  surface topography i s  i t s e l f  a geoid ( fo r  
example, i f  the  e n t i r e  planet  were covered by an ocean) , the geographic 
d i s t r i b u t i o n  of the atmosphere would be p rac t i ca l ly  uniform i n  t he  sense 
t h a t  i t s  surface densi ty  n ( 0 , t )  would be independent of geographic location 
n, changing only w i t h  time t. In such a case,  the  changing atmosphere has no 
grav i ta t iona l  e f f e c t  (except on the  t o t a l  mass which, of course, i s  compen- 
sated by the waxing and waning of polar caps). In r e a l i t y ,  t he  Martian 
sur face  topography i s  not a geoid. In f a c t ,  Mars, unlike the  Earth, has a 
r e l a t i v e l y  la rge  surface r e l i e f ,  so much so t h a t  a subs tan t ia l  f r ac t ion  of 
t he  atmosphere can "feel  'I the topography. The atmospheric surface densi ty  Q 

will  be smaller where the topography protrudes the  geoid (e.g. over a h i g h  
p la teau) ,  and l a rge r  otherwise (e.g. over a low basin).  

determines how n(n)  is  t o  deviate  from being uniform. This "e f f ec t ive  
topography", denoted by h(n) (see Figure 3 ) ,  can be wri t ten i n  terms o f  
spheri cal harmonics a s  

Thus, it. is  the  departure o f  the true topography from t h e  geoid t h a t  

The coe f f i c i en t  Him, using equation (4) and Bruns formula, i s  

where H i m  i s  the complex harmonic coef f ic ien t  of t he  t r u e  topography h ' (n)  
( r e l a t i v e  t o  the reference spheroid): 

a 1  
h ' (0)  = R Re[ C C H i m  YTm(n) ] 

1=1 m=O 

Notice t h a t  i n  equations (12) and (14) we included f i r s t -degree  (1=1) 
harmonics. They represent a displacement of the center  o f  f igu re  from the 
center  of mass ( B i l l s  and Ferrar i  , 1978). 
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Z 
Atmosphere --- 

Scale Height 
Topography 
Geoid 

/ 
/ 

Fig. 3. Schematic diagram showing the distribution of atmosphere as speci- 
fied by the scale height, in relation 10 the topography, the geoid, and the 
reference spheroid. N: geoid height, h : true topography, h: effective 
topography, z: vertical height from surface. 

Table 2. Maximum gravitational effect o f  the changing atmospheric C02 
(equat i on 20). 

(1 (AClmi ASlm) (~10’) AJl (X109) A N l m  (mm) 

(1 I O )  ( -0.48 -- 1 0.84 1.6 

( 1 1 1 )  ( -0.021 0.51 ) -- 1.7 

(2.0) ( -0.73 -- 1 1.6 2.5 

(211) ( 0.11 -0.16 ) -- 0.67 

(2 12) ( -0.31 -0.25 ) -- 1.4 

(3 I 0) ( 0.046 -- 1 -0.12 0.16 

(313) ( 0.085 -0.25 ) -- 0.88 
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From h(n) we can obtain Aa(n) for t he  atmospheric C02 as  follows. The 
lower atmosphere i s  where v i r t u a l l y  a l l  t he  atmospheric mass resides .  The 
equi 1 i b r i  um densi ty  var ia t ion  there  can be approximated by the  isothermal 
prof i 1 e 

where z i s  the  ve r t i ca l  height from the  surface,  and p i s  the  atmospheric 
densi ty  on the  geoid z=-h(n). Z i s  the atmospheric sca?e height (see Figure 
3 )  and i s  given by 

Z = kTJvg 

where k i s  the Boltzmann constant (1.38 X 
ture of the lower atmosphere, v is  the molecular weight of C02 (7.3 x 10-z6 
kg), and the  surface grav i ty  g=3.7 m s-2. 

J ' K - l ) ,  T i s  t he  tempera- 

The temperature T,  and hence the sca l e  height Z a r e  of course functions 
of time and posi t ion.  For s implici ty  we sha l l  take T t o  be the  s p a t i a l l y  
averaged atmospheric temperature over the  globe a t  any given time. By doing 
so we a r e  e s s e n t i a l l y  disregarding the e f f e c t  on Z due t o  diurnal f luctua-  
t i ons  in  the  temperature. This i s  permissible because these f luc tua t ions  
average out  on a seasonal time scale  and has l i t t l e  bearing in the  present 
study. However, T i s  s t i l l  a function of the  time of the  year because of the  
eccen t r i c i ty  o f  the  Mars' o r b i t  r e l a t ive  t o  the  Sun. In pa r t i cu la r ,  T wil l  
be highest  nesr periheli~n ( l a t e  snnthern spring) and lowest near aphelion 
( l a t e  southern f a l l ) .  A br i e f  examination of Figure 2 reveals  t h a t  a t  the  
times under consideration, namely the times when the  amount of the  atmo- 
sphere i s  a t  i t s  maximum (t=O) and minimum ( t = t O ) ,  the  global ly  averaged T 
should be about the same and somewhat higher than the  year ly  mean value. 
Therefore we can take T as  a constant f o r  which our best  judgment i s  T =  
ZZO'K, corresponding t o  a nominal Z = 11 km according t o  equation (16). For 
Viking lander observations during landing a t  Northern mid-lati tudes in 
summer, the reader i s  re fer red  t o  Seiff  and Kirk, 1977. We should mention 
t h a t  we have considered the  surface values only. In r e a l i t y ,  the  temperature 
decreases with increasing a l t i t u d e  f a i r l y  rapidly,  so t h a t  the  "ef fec t ive"  
s c a l e  height i s  somewhat smaller than 11 km. In o ther  words, 11 km i s  
probably an upper bound on Z. 

of the atmospheric C02 is  
Under a l l  the s impl i f ica t ions  made so f a r ,  t he  change in surface densi ty  

To proceed, we not ice  t h a t ,  although the  true Martian topography (h ' )  i s  a t  
places  comparable t o  o r  even exceeds the  atmospheric s ca l e  height Z ,  the 
e f f e c t i v e  topography (h) i s  generally much smaller. In f a c t ,  t he  rms ampli- 
tudes R I H l m J  of the individual (1,m) harmonic component of h a r e  a l l  small 
compared w i t h  Z (the l a rges t  term i s  only about O. lZ ,  see B i l l s  and Fe r ra r i ,  
1978). T h i s  is  a consequence o f  the high cor re la t ion  between the topography 
and the  grav i ta t iona l  f i e l d  of Mars (e.g., B i l l s  & Fer ra r i ,  1978), especia- 
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l l y  in  low-degree harmonics on which we sha l l  concentrate.  Therefore we can 
approximate exp[-h(n)/Z] by subs t i t u t ing  the  expression (12) f o r  h(n) and 
re ta in ing  t h e  f i r s t - o r d e r  terms i n  a Taylor expansion 

R 

Z 1=1 m = O  
exp[-h(n)/Z] = 1 - - 

Subs t i tu t ing  this expression i n t o  equation (17) and then i n t o  (9) leads t o  

where AM(t) = 4rR2ZAp ( t )  i s  the  t o t a l  C02 mass added t o  the  atmosphere. 
Using the  orthogonali?y (3)  of the  spherical  harmonics, equation (19) 
reduces t o  

as  long as  1 , m  # 0. Equation (20) i s  the  f i n a l  formula f o r  the  grav i ta t iona l  
e f f e c t  due t o  t h e  changing atmospheric C02 mass. Note t h a t  t h i s  e f f e c t  
separates  natural ly  in to  spherical  harmonics, in t he  sense t h a t  the  (1,m) 
component of the change in  the  complex Stokes coe f f i c i en t ,  AAlm, i s  d i r e c t l y  
and so le ly  proportional t o  the  (1,m) component of the e f f ec t ive  topography, 
RH This fur ther  j u s t i f i e s  a pos te r ior i  t he  approximation in  equation 
(18y: The atmospheric C02 mass change AM(t) = -[AMn(t) + AMs(t)] i s  shown in 
Figure 2. The H coe f f i c i en t s  can be obtained, according t o  equation (13), 
from the Hlm eslymates published by B i l l s  and Ferrar i  (1978) and the A1 
es t imates  by Christensen and Balmino (1979) and Balmino e t  a l .  (1982). Aote 
t h a t  t h e  S 
present  deiynition o f  t he  (eas t )  longitude X.  

when AM(tO) = -8 x 1015 kg (Figure 2), f o r  some most prominent low-degree 
harmonics: 

values in these s tud ies  should change sign t o  conform t o  our 

Table 2 presents t he  maximum amplitude of AAl,(t) , which occurs a t  t=tO 

The f i r s t -degree  (1=1) harmonics gives the change in the r e l a t i v e  
displacement of the center  of f igure  from the  center  of mass ( B i l l s  and 
Fe r ra r i ,  1978). This displacement i s  found t o  be 2.4 mm in  the  d i r ec t ion  
(92'E, 44") using our longitude convention. 

The change i n  t he  (2,O) harmonic, and hence in  J2, i s  again the  l a r g e s t  
term, t h i s  time r e f l ec t ing  the  so l id  Mars' l a rge  deviation from a 
hydros ta t ic  equilibrium s t a t e .  I t  i s  out of phase with the  polar  cap cont r i -  
bution, decreasing the  amplitude by nearly one quarter .  The reason these  two 
changes i n  J2 a r e  out  of phase i s  due t o  Mars' excess topographic oblate-  
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ness. The polar  regions a r e  topographically low. Hence the excess atmosphere 
there  decreases when the caps grow, increasing J2. Note t h a t  t he  change in 
the (3,O) harmonic, and hence i n  J3, i s  a l so  out of phase with respect  t o  
the polar  cap contr ibut ion,  but i t s  amplitude i s  negl igible .  

ax i s  of the g rea t e s t  moment of i n e r t i a ,  o r  the  f igu re  axis .  The angular 
departure of the f igu re  ax i s  from the z axis  is  usually expressed i n  terms 
of i t s  x- and y-components, I = Ix+iIy.  This function I exc i t e s  the polar  
motion and is  thus known as  the  polar-motion exc i ta t ion  function (Munk and 
MacDonald, 1960). For any exci ta t ion mechanism t h a t  loads the planet  (such 
as  atmospheric var ia t ions)  , $ can be found by 

The change in  the ( 2 , l )  harmonics gives r i s e  t o  a s h i f t  in  t h e  pr incipal  

The exc i ta t ion  function in the  present case has some in t e re s t ing  fea tures ,  
as  can be shown from equation (21) and Table 2. First, i t  s tays  s t r i c t l y  
along a fixed meridian (125'E), simply because the  topography i s  f ixed. 
Second, i t s  maximum amp1 i tude i s  26 m i  11 i arcsecond (mas) , equi Val en t  t o  a 
surface polar  displacement as  large as  45 cm. Compare this with t h a t  on 
Earth produced by the grea t  1960 Chilean earthquake, 23 mas (e.g., Chao & 
Gross, 1986) o r  the s t rong El Nino event of 1982-1983, -40 mas (Gross and 
Chao, 1985). Unfortunately this rather  strong exc i t a t ion ,  a t  annual (669 
so l s )  and semi-annual periods,  i s  not l i ke ly  t o  generate a la rge  polar  
motion. T h i s  i s  because Mars, assuming an Earth-like r i g i d i t y ,  has a f r e e  
wobble period of about 200 sols. Hence, unlike the Earth, no resonance 
should be expected from seasonal exci ta t ions.  

geoid height changes comparable t o  the above changes. They a r e  exceptionally 
la rge  on Mars simply because o f  the exis tence of the extensive Tharsis 
construct  and i t s  ant ipodal ,  but smal 1 e r ,  up1 i f t .  

The (2,2) and (3,3) harmonics are the  only o ther  components t h a t  have 
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Discussion 

The var ia t ions i n  Mars' g rav i ta t iona l  f i e l d  due t o  the CO mass exchange 
a re  generally very la rge  compared w i t h  t h e i r  t e r r e s t r i a l  coun P e rpa r t s .  
Nevertheless, whether they can be observed by the  upcoming MOM (Mars 
Observer Mission, due t o  be launched i n  1990) i s  present ly  uncertain.  A 
simple simulation made by F. Lerch and C. Wagner f o r  an MOM proposal (1985) 
has indicated t h a t ,  using Doppler t racking da ta  of t he  MO o r b i t  alone,  the  
change i n  J can be marginally detected.  I f  i n  addi t ion the  surface a l t i -  
metry da ta  ?as di f fe rences  a t  crossovers) a r e  ava i lab le ,  then the accuracy 
i n  the  gravi ta t ional  f i e l d  determination i s  expected t o  be improved. I t  may 
then be possible t o  de tec t  changes in J2 t o  a higher precis ion,  thus placing 
cons t ra in ts  on the meteorological models of Mars. However, t he  simulation i s  
done under the assumption t h a t  a1 1 favorable conditions prevai l  throughout 
the  MOM l i fe t ime (1 Martian year ) ,  and t h a t  no non-gravitational forces  i s  
ac t ing  on the spacecraf t .  The l a t t e r  includes the  atmospheric drag whose 
e f f e c t  on the MO o r b i t ,  according t o  some est imates ,  may completely obscure 
the  o rb i t a l  e f f e c t s  caused by the  small seasonal va r i a t ions  i n  t he  grav i ta -  
t iona l  f i e l d .  A t  t he  present time, simply too l i t t l e  about t he  Martian 
atmospheric density i s  known t o  warrant any f u r t h e r  modeling. 
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